Counting 5-isogenies of elliptic curves over the rationals
Santiago Arango-PiƱeros (Emory)
Abstract: In collaboration with Han, Padurariu, and Park, we show that the number of $5$-isogenies of elliptic curves defined over $\mathbb{Q}$ with naive height bounded by $H > 0$ is asymptotic to $C_5\cdot H^{1/6} (\log H)^2$ for some explicitly computable constant $C_5 > 0$. This settles the asymptotic count of rational points on the genus zero modular curves $X_0(m)$. We leverage an explicit $\mathbb{Q}$-isomorphism between the stack $\mathscr{X}_0(5)$ and the generalized Fermat equation $x^2 + y^2 = z^4$ with $\mathbb{G}_m$ action of weights $(4, 4, 2)$.
Pretalk: I will explain how to count isomorphism classes of elliptic curves over the rationals. On the way, I will introduce some basic stacky notions: torsors, quotient stacks, weighted projective stacks, and canonical rings.
number theory
Audience: researchers in the topic
Comments: pre-talk at 3pm
Series comments: Most talks are preceded by a pre-talk for graduate students and postdocs. The pre-talks start 40 minutes prior to the posted time (usually at 1:20pm Pacific) and last about 30 minutes.
| Organizers: | Kiran Kedlaya*, Alina Bucur, Aaron Pollack, Cristian Popescu, Claus Sorensen |
| *contact for this listing |
